A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems
نویسندگان
چکیده
In this work we present a branch-and-bound (B&B) framework for the asymmetric prizecollecting Steiner tree problem (APCSTP). Several well-known network design problems can be transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS) and the nodeweighted Steiner tree problem (NWSTP). The main component of our framework is a new dual ascent algorithm for the rooted APCSTP, which generalizes Wong’s dual ascent algorithm for the Steiner arborescence problem. The lower bounds and dual information obtained from the algorithm are exploited within powerful bound-based reduction tests and for guiding primal heuristics. The framework is complemented by additional alternative-based reduction tests. All tests are applied in every node of the B&B tree. Extensive computational results on benchmark instances for the PCSTP, MWCS and NWSTP indicate the framework’s effectiveness, as most instances from literature are solved to optimality within seconds, including most of the (previously unsolved) largest instances from the recent DIMACS Challenge on Steiner Trees. In many cases the framework even manages to outperform recently proposed state-of-the-art exact and heuristic algorithms. Since the network design problems addressed in this work are frequently used for modeling various real-world applications (e.g., in bioinformatics), the presented B&B framework will also be made publicly available.
منابع مشابه
Primal and Dual Bounds for the Prize-collecting Steiner Problem in Graphs
Given an undirected graph G with associated edge costs and vertex penalties, a Prize Collecting Steiner (PCS) tree is either an isolated vertex of G or else any tree of that graph. The weight of a PCS tree equals the sum of its edge costs plus the sum of the penalties for the vertices of G not spanned by the tree. The Prize Collecting Steiner Problem in Graphs (PCSPG) is to find a PCS tree of l...
متن کاملA 4-Approximation Algorithm for k-Prize Collecting Steiner Tree Problems
This paper studies a 4-approximation algorithm for k-prize collecting Steiner tree problems. This problem generalizes both k-minimum spanning tree problems and prize collecting Steiner tree problems. Our proposed algorithm employs two 2-approximation algorithms for k-minimum spanning tree problems and prize collecting Steiner tree problems. Also our algorithm framework can be applied to a speci...
متن کاملNear-Optimal Online Algorithms for Prize-Collecting Steiner Problems
In this paper, we give the first online algorithms with a polylogarithmic competitive ratio for the node-weighted prize-collecting Steiner tree and Steiner forest problems. The competitive ratios are optimal up to logarithmic factors. In fact, we give a generic technique for reducing online prize-collecting Steiner problems to the fractional version of their non-prize-collecting counterparts lo...
متن کاملPrize-Collecting Steiner Tree and Forest in Planar Graphs
We obtain polynomial-time approximation-preserving reductions (up to a factor of 1+ε) from the prizecollecting Steiner tree and prize-collecting Steiner forest problems in planar graphs to the corresponding problems in graphs of bounded treewidth. We also give an exact algorithm for the prize-collecting Steiner tree problem that runs in polynomial time for graphs of bounded treewidth. This, com...
متن کاملA note on Johnson, Minkoff and Phillips' algorithm for the Prize-Collecting Steiner Tree Problem
The primal-dual scheme has been used to provide approximation algorithms for many problems. Goemans and Williamson gave a (2− 1 n−1 )-approximation for the Prize-Collecting Steiner Tree Problem that runs in O(n logn) time. Johnson, Minkoff and Phillips proposed a faster implementation of Goemans and Williamson’s algorithm. We give a proof that the approximation ratio of this implementation is e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016